Constructing a Generative Adversarial Network with Keras

Posted by

<!DOCTYPE html>

Building a Generative Adversarial Network using Keras

Building a Generative Adversarial Network using Keras

Generative Adversarial Networks (GANs) are a powerful type of neural network model that can be used to generate new data samples. In this tutorial, we will walk you through the process of building a GAN using the Keras library in Python.

Step 1: Import necessary libraries


import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Reshape, Flatten
from keras.layers import Conv2D, Conv2DTranspose

Step 2: Define the generator model


def build_generator():
    model = Sequential()
    model.add(Dense(128 * 7 * 7, input_dim=100))
    model.add(Reshape((7, 7, 128)))
    model.add(Conv2DTranspose(128, (4,4), strides=(2,2), padding='same'))
    model.add(Conv2DTranspose(128, (4,4), strides=(2,2), padding='same'))
    model.add(Conv2D(1, (7,7), activation='sigmoid', padding='same'))
    return model

Step 3: Define the discriminator model


def build_discriminator():
    model = Sequential()
    model.add(Conv2D(64, (3,3), strides=(2,2), padding='same', input_shape=(28, 28, 1)))
    model.add(Conv2D(128, (3,3), strides=(2,2), padding='same'))
    model.add(Flatten())
    model.add(Dense(1, activation='sigmoid'))
    return model

Step 4: Combine the generator and discriminator models


generator = build_generator()
discriminator = build_discriminator()
gan = Sequential()
gan.add(generator)
gan.add(discriminator)

Step 5: Compile and train the GAN model


discriminator.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
discriminator.trainable = False
gan.compile(loss='binary_crossentropy', optimizer='adam')
gan.fit(X_train, y_train, epochs=100, batch_size=128)

By following these steps, you can build a Generative Adversarial Network using the Keras library in Python. GANs have a wide range of applications in image generation, text generation, and more. Experiment with different architectures and hyperparameters to generate more realistic and diverse samples.