How to convert a Scikit-learn dataset to a Pandas dataset
If you have a dataset that you have loaded using Scikit-learn and you want to convert it to a Pandas dataframe, there are a few steps you can follow to accomplish this task.
- First, import the necessary libraries:
- Load the dataset using Scikit-learn:
- Create a Pandas dataframe from the dataset:
- Add the target variable to the dataframe, if applicable:
<pre>
import pandas as pd
from sklearn import datasets
</pre>
<pre>
</pre>
iris = datasets.load_iris()
<pre>
</pre>
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
<pre>
</pre>
df['target'] = iris.target
By following these steps, you can easily convert a Scikit-learn dataset to a Pandas dataframe and perform further analysis using Pandas’ powerful data manipulation capabilities.