In this tutorial, we will build a classification model using PyTorch on the CIFAR-10 dataset. CIFAR-10 is a well-known dataset that consists of 60,000 32×32 color images in 10 classes, with 6,000 images per class. The classes are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
To follow along with this tutorial, you will need to have PyTorch installed on your system. You can install PyTorch using pip by running the following command:
pip install torch torchvision
Once you have PyTorch installed, you can proceed with building the classification model on CIFAR-10. We will first load the CIFAR-10 dataset using the torchvision library, and then build and train a simple convolutional neural network (CNN) model for classification.
Step 1: Load and preprocess the CIFAR-10 dataset
First, let’s import the necessary libraries and load the CIFAR-10 dataset using torchvision:
import torch
import torchvision
import torchvision.transforms as transforms
# Load the CIFAR-10 dataset
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
Step 2: Define the CNN model
Next, let’s define a simple CNN model for classification:
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
Step 3: Define the loss function and optimizer
Next, we will define the loss function and the optimizer for training the model:
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
Step 4: Train the model
Now, let’s train the model on the CIFAR-10 dataset:
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
Step 5: Test the model
Finally, let’s test the model on the test set and calculate the accuracy:
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
This concludes our tutorial on building a classification model using PyTorch on the CIFAR-10 dataset. Feel free to experiment with different architectures and hyperparameters to improve the performance of the model. Happy coding!
I couldn't find this on your GitHub!
please add your notebook in the discription
and if i use this images, labels = next(dataiter) then it throws the error 'module' object is not callable, How to fix this?
images, labels = dataiter.next() in this line the colab is throwing error which says _MultiProcessingDataLoaderIter' object has no attribute 'next' , How to fix this please tell me
Thanks for you tutorial
Can you share the link of this codes please