Linear Regression Tutorial with PyTorch: A Quick Guide #PyTorch #coding #shorts

Posted by

PyTorch Tutorial: Linear Regression

PyTorch Tutorial: Linear Regression

In this tutorial, we will learn how to perform linear regression using PyTorch.

Step 1: Import PyTorch

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"></script>

Step 2: Create Data

import torch
import numpy as np

# Create some data
X = torch.tensor([[1.0], [2.0], [3.0], [4.0]])
y = torch.tensor([[2.0], [4.0], [6.0], [8.0]])

Step 3: Create a Model

# Define a linear regression model
class LinearRegression(torch.nn.Module):
    def __init__(self):
        super(LinearRegression, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        return self.linear(x)

Step 4: Train the Model

<pre# Instantiate the model
model = LinearRegression()

# Define the loss function and optimizer
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# Train the model
for epoch in range(100):
# Forward pass
y_pred = model(X)

# Compute the loss
loss = criterion(y_pred, y)

# Backward pass
optimizer.zero_grad()
loss.backward()
optimizer.step()

Step 5: Make Predictions

# Make predictions
new_X = torch.tensor([[5.0], [6.0]])
new_y = model(new_X)

print(new_y)

That’s it! You have now successfully performed linear regression using PyTorch.

0 0 votes
Article Rating
1 Comment
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
@teachingtechnologyy
5 months ago

Subscribe for more Neural Network Content!