Methodology of Scikit Learn’s Fit, Transform, and Fit_Transform Functions

Posted by


Scikit-learn is a popular machine learning library in Python that provides a wide range of tools for creating and training machine learning models. In this tutorial, we will focus on the fit, transform, and fit_transform methods available in scikit-learn’s Pipeline class.

The fit method is used to train a model on a training dataset. When you call the fit method on a model object, it takes two inputs: the training features (X_train) and the training labels (y_train), and learns the parameters of the model based on this data. For example, if you have a linear regression model, calling the fit method will estimate the coefficients for the linear regression equation.

model.fit(X_train, y_train)

The transform method is used to apply the trained model to new data. When you call the transform method on a model object, it takes a single input: the features of the new data (X_new), and produces predictions or transformed features based on the model that was trained with the fit method. For example, if you have a linear regression model, calling the transform method will predict the target variable for the new data.

predictions = model.transform(X_new)

The fit_transform method combines the fit and transform methods into a single step. This is useful when you want to apply feature engineering techniques or data preprocessing steps to the training data and then use the same transformations on new data. When you call the fit_transform method on a model object, it takes a single input: the training features (X_train), and both learns the parameters of the model and applies the transformations to the training data.

transformed_features = model.fit_transform(X_train)

To illustrate these concepts, let’s walk through an example using scikit-learn’s Pipeline class. In this example, we will build a pipeline that scales the features using the StandardScaler and trains a linear regression model using the scaled features.

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression

# Create a pipeline with StandardScaler and LinearRegression
model = Pipeline([
    ('scaler', StandardScaler()),
    ('regression', LinearRegression())
])

# Train the model with the training data
model.fit(X_train, y_train)

# Apply the trained model to new data
predictions = model.transform(X_new)

# Alternatively, you can use fit_transform to both train the model and apply the transformations
transformed_features = model.fit_transform(X_train)

In this example, the fit method is used to train the model on the training data, the transform method is used to make predictions on new data, and the fit_transform method is used to train the model and apply the transformations to the training data.

In summary, the fit, transform, and fit_transform methods are essential tools in scikit-learn for training models, making predictions, and applying feature engineering or preprocessing steps. Understanding how to use these methods in your machine learning workflows will help you build more robust and accurate models.

0 0 votes
Article Rating
1 Comment
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
@ahmedhelal920
1 month ago

Thank you I have question if we scaled x_train and x_test and and we are satisfied with metrics now should fit the model on all x and y right
So we have to fit_transform x then fit the model on it