Python Implementation of Deep Reinforcement Learning using OpenAI Gym

Posted by

Deep Reinforcement Learning with OpenAI Gym in Python

Deep Reinforcement Learning with OpenAI Gym in Python

Deep Reinforcement Learning is a subfield of machine learning that focuses on training agents to make sequential decisions by interacting with an environment to achieve a specific goal. OpenAI Gym is a powerful toolkit for developing and comparing reinforcement learning algorithms.

In this article, we will explore how to use OpenAI Gym in Python to implement Deep Reinforcement Learning. We will use the Keras library for building and training deep neural networks.

Setting up OpenAI Gym

To get started with OpenAI Gym, you will first need to install the gym package using the following command:

		pip install gym
	

Once the package is installed, you can import the gym module and create an environment using the following Python code:

		import gym
env = gym.make('CartPole-v1')
	

Implementing Deep Q-Network

One popular algorithm for Deep Reinforcement Learning is the Deep Q-Network (DQN) algorithm. DQN uses a deep neural network to approximate the Q-function, which represents the expected future rewards for each action in a given state.

Using the Keras library, you can easily build a DQN model in Python. Here’s an example of how to define a simple neural network for the CartPole-v1 environment:

		from keras.models import Sequential
from keras.layers import Dense

model = Sequential()
model.add(Dense(24, input_shape=(env.observation_space.shape[0],), activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(env.action_space.n, activation='linear'))
	

After defining the model, you can compile it and train it on the environment using a training loop. During training, the agent will interact with the environment, collect experiences, and update the Q-values using the Bellman equation.

Testing the Trained Model

Once the model is trained, you can test it by running episodes in the environment and observing the agent’s behavior. You can use the following code to run a test episode in the CartPole-v1 environment:

		state = env.reset()
done = False
while not done:
    action = np.argmax(model.predict(state.reshape(1, -1)))
    next_state, reward, done, _ = env.step(action)
    state = next_state
    env.render()
	

These are just the basics of implementing Deep Reinforcement Learning with OpenAI Gym in Python. There are many other algorithms and techniques that you can explore, such as Proximal Policy Optimization (PPO), Deep Deterministic Policy Gradients (DDPG), and more.

By using OpenAI Gym and the Keras library, you can create and train powerful deep reinforcement learning agents to solve a wide range of challenging tasks.

0 0 votes
Article Rating
47 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
@darshdubey1147
10 months ago

code is:
import random

import gym

import numpy as np

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Flatten

from tensorflow.keras.optimizers import Adam

from rl.agents import DQNAgent

from rl.policy import BoltzmannQPolicy

from rl.memory import SequentialMemory

env = gym.make('CartPole-v1')

states = env.observation_space.shape[0]

actions = env.action_space.n

model = Sequential()

model.add(Flatten(input_shape=(1, states)))

model.add(Dense(24, activation='relu'))

model.add(Dense(24, activation='relu'))

model.add(Dense(actions, activation='linear'))

agent = DQNAgent(

model=model,

memory=SequentialMemory(limit=50000, window_length=1),

policy=BoltzmannQPolicy(),

nb_actions=actions,

nb_steps_warmup=10,

target_model_update=0.01

)

agent.compile(Adam(lr=0.001), metrics=["mae"])

agent.fit(env, nb_steps=100000, visualize=False, verbose=1)

results = agent.test(env, nb_episodes=10, visualize=True)

print(np.mean(results.history['episode_reward']))

env.close()

And error is:
Traceback (most recent call last):

File "e:Machine learning using PythontempCodeRunnerFile.py", line 1, in <module>

from rl.agents import DQNAgent

File "C:UsersDarsh DubeyAppDataLocalProgramsPythonPython310libsite-packagesrlagents__init__.py", line 2, in <module>

from .dqn import DQNAgent, NAFAgent, ContinuousDQNAgent

File "C:UsersDarsh DubeyAppDataLocalProgramsPythonPython310libsite-packagesrlagentsdqn.py", line 9, in <module>

from rl.policy import EpsGreedyQPolicy, GreedyQPolicy

File "C:UsersDarsh DubeyAppDataLocalProgramsPythonPython310libsite-packagesrlpolicy.py", line 4, in <module>

from rl.util import *

File "C:UsersDarsh DubeyAppDataLocalProgramsPythonPython310libsite-packagesrlutil.py", line 4, in <module>

from keras.models import model_from_config,Sequential, Model#model_from_config

ImportError: cannot import name 'model_from_config' from 'keras.models' (C:UsersDarsh DubeyAppDataLocalProgramsPythonPython310libsite-packageskerasmodels__init__.py)

Can anyone tell me fix ASAP 😭😭

@chidambarjoshi3470
10 months ago

How to resolve module not found 'gym' error

@MuninnNova
10 months ago

Omg! Awesome! I just needed to learn this!

@saeidanwar8587
10 months ago

To make the code work you need specific versions of the libraries:
tensorflow: 2.12.0
gym: 0.25.2
keras-rl2: 1.0.5

@ktles2628
10 months ago

Im not able to install "rl" library, –on windows please help me.. asap

@moe_lester9801
10 months ago

Damm hell yeah would like theory

@ApexArtistX
10 months ago

Outdated

@ApexArtistX
10 months ago

error if
from rl.agents import DQNAgent
help

@ApexArtistX
10 months ago

from keras.utils.generic_utils import Progbar

ModuleNotFoundError: No module named 'keras.utils.generic_utils'

@ApexArtistX
10 months ago

finally a tutorial that does not use google collab notebook..

@user-uu7dy4lx3v
10 months ago

Explain the theory too

@filipperusso6952
10 months ago

Hey I'm an industrial engineer in master degree and for the year's project a friend and I need to code an IA that is self driving. For me it could be really interesting to have a theoretical apprach for all of this so it could be nice that you make a serie on it. By the way if someone that's reading has some tehoretical resources on the subject I'm intersested in it.

@azizbounouh1576
10 months ago

saved me, thanks

@dedsec1175
10 months ago

i have some problems with the tensor flow and the keras can you tell me what version of those 2 libraries r u using and what python version?

@atulpachauri7132
10 months ago

you doing well, but I need to understand from SCRATCH can you?

@ddarksidee
10 months ago

How did you manage to install rl? It seems like it doesn't support windows, so pip install rl always fails

@derprogamer00
10 months ago

If anyone is watching now or anytime in the future and gets a "ValueError: too many values to unpack" error.
Try adding another . _ to the part where is says = env.step(action)

that helped for me at least

@user-oc6ro1go2m
10 months ago

Do you have some videos about setting up custom Gym envoriment?

@fondmetal91
10 months ago

what IDE do you use? I thought Visual Studio Code but it`s not, or?

@khlififares2850
10 months ago

i think there some compatibilities issues with the Adam optimizer, what is the version for tensorflow you've been using in the video, that would be appreciated