parallelism:

  • How to Implement Data Parallelism in PyTorch? Principles of DP, DDP, and FSDP Data Parallelism. Series 7 on Large Models and Distributed Training (Part 1)

    How to Implement Data Parallelism in PyTorch? Principles of DP, DDP, and FSDP Data Parallelism. Series 7 on Large Models and Distributed Training (Part 1)

    在深度学习训练过程中,数据并行是一种常见的加速方法,它可以利用多个GPU或多台机器同时处理不同的数据进行训练。PyTorch提供了几种数据并行的实现方式,包括DataParallel (DP)、DistributedDataParallel (DDP)和FullyShardedDataParallel (FSDP)。 DataParallel (DP)是最简单的数据并行实现方式,它适用于单机多卡的训练。DP将模型复制到所有的GPU上,每个GPU负责处理一部分数据,然后将所有GPU的梯度累加,最后在主GPU上更新模型参数。DP的实现非常简单,只需要一行代码即可: model = nn.DataParallel(model) 这样就可以将模型复制到所有的GPU上并实现数据并行训练。然而,DP存在一个明显的缺点,即当模型很大时,将整个模型复制到每个GPU上会占用大量的显存,导致内存不足错误。为了解决这个问题,PyTorch引入了DistributedDataParallel (DDP)和FullyShardedDataParallel (FSDP)。 DistributedDataParallel (DDP)是一种更加灵活和高效的数据并行实现方式,它适用于分布式训练。DDP不会将整个模型复制到每个GPU上,而是将模型的每一层分布到不同的GPU上,每个GPU只负责处理自己分配到的部分。DDP中的每个进程都有一个本地模型,每个进程的本地模型的参数会在每个步骤中与其他进程的本地模型的参数同步。DDP的实现如下: model = nn.parallel.DistributedDataParallel(model, device_ids=[gpu_id]) 需要注意的是,DDP需要配合使用torch.distributed进行进程间的通信和同步。要使用DDP,首先需要初始化分布式训练环境: import…

  • Leveraging DistributedTensor and PyTorch DistributedTensor for 2-D Parallelism

    Leveraging DistributedTensor and PyTorch DistributedTensor for 2-D Parallelism

    In this tutorial, we will learn about 2-D parallelism using DistributedTensor and PyTorch DistributedTensor. Parallelism is the act of splitting…

  • PiPPy: Enhancing PyTorch with Automated Pipeline Parallelism

    PiPPy: Enhancing PyTorch with Automated Pipeline Parallelism

    PiPPy is a tool that allows users to automate the process of creating pipeline parallelism in their PyTorch code. This…

  • Utilizing PyTorch DDP for Data Parallelism: NVAITC Webinar

    Utilizing PyTorch DDP for Data Parallelism: NVAITC Webinar

    Data Parallelism Using PyTorch DDP | NVAITC Webinar Are you interested in learning more about data parallelism and how to…